Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Vet Res ; 20(1): 127, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561720

RESUMO

BACKGROUND: Pseudomonas putida is a pathogenic bacterium that induces great losses in fishes, including Nile tilapia (Oreochromis niloticus). Currently, the application of nanomaterials in aquaculture practices has gained more success as it endows promising results in therapies compared to traditional protocols. OBJECTIVE: Therefore, the current perspective is considered the first report to assess the anti-bacterial efficacy of titanium dioxide nanogel (TDNG) against Pseudomonas putida (P. putida) in Nile tilapia. METHODS: The fish (n = 200; average body weight: 47.50±1.32 g) were allocated into four random groups (control, TDNG, P. putida, and TDNG + P. putida), where 0.9 mg/L of TDNG was applied as bath treatment for ten days. RESULTS: Outcomes revealed that P. putida infection caused ethological alterations (surfacing, abnormal movement, and aggression) and depression of immune-antioxidant variables (complement 3, lysozyme activity, total antioxidant capacity, superoxide dismutase, and reduced glutathione content). Additionally, a substantial elevation in hepatorenal biomarkers (aspartate and alanine aminotransferases and creatinine) with clear histopathological changes and immuno-histochemical alterations (very weak BCL-2 and potent caspase-3 immuno-expressions) were seen. Surprisingly, treating P. putida-infected fish with TDNG improved these variables and obvious restoration of the tissue architectures. CONCLUSION: Overall, this report encompasses the key role of TDNG as an anti-bacterial agent for controlling P. putida infection and improving the health status of Nile tilapia.


Assuntos
Ciclídeos , Doenças dos Peixes , Polietilenoglicóis , Polietilenoimina , Pseudomonas putida , Titânio , Animais , Antioxidantes , Nanogéis , Dieta , Suplementos Nutricionais , Ração Animal/análise , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia
2.
Aquat Toxicol ; 265: 106738, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37922777

RESUMO

This study was established to look into the toxicological consequences of chronic exposure to a fungicide (mancozeb; MAZ) on the immune-antioxidant response, gene expressions, hepato-renal functions, and histological pictures of Nile tilapia (Oreochromis niloticus). Additionally, the effectiveness of Indian frankincense resin extract (IFRE) to mitigate their toxicity was taken into account. Fish (n =240; average body weight: 22.45 ± 2.21 g) were randomized into four groups for eight weeks in six replicates (control, IFRE, MAZ, and IFRE + MAZ), where ten fish were kept per replicate. The control and IFRE groups received basal diets that included 0.0 and 5 g/kg of IFRE without MAZ exposure. The MAZ and IFRE+MAZ groups received the same diets and were exposed to 1/10 of the 96-h of LC50 of MAZ (1.15 mg/L). The outcomes displayed that MAZ exposure resulted in a lower survival rate (56.67 %) and significantly decreased levels of immune-antioxidant variables (antiprotease, complement3, phagocytic activity, lysozyme, glutathione peroxidase, superoxide dismutase, and total antioxidant capacity) compared to the control group. The MAZ-exposed fish showed the greatest levels of lipid peroxide (malondialdehyde), alkaline phosphatase, alanine amino-transferase, and stress indicators (cortisol and glucose). Additionally, histopathological alterations, including vacuolation, severe necrosis, degeneration, and mononuclear cell infiltrations in the hepatic, renal, and splenic tissues resulted, besides a reduction in the melanomacrophage center in the spleen. A down-regulation of immune-antioxidant-associated genes [toll-like receptors (TLR-2 and TLR-7), nuclear factor kappa beta (NF-κß), transforming growth factor-beta (TGF-ß), phosphoinositide-3-kinase regulatory subunit 3 gamma b (pik3r3b), interleukins (IL-1ß and IL-8), glutathione synthetase (GSS), glutathione peroxidase (GPx), and superoxide dismutase (SOD)] were the consequences of the MAZ exposure. Remarkably, the dietary inclusion of IFRE in MAZ-exposed fish augmented the immune-antioxidant parameters, including their associated genes, decreased stress response, and increased survival rate (85 %) compared with the MAZ-exposed fish. Moreover, dietary IFRE improved hepato-renal function indices by preserving the histological architecture of the hepatic, renal, and splenic tissues. The insights of this study advocate the use of an IFRE-dietary addition to protect Nile tilapia from MAZ toxicity, which provides perspectives for future implementations in enhancing fish health for sustainable aquaculture.


Assuntos
Boswellia , Ciclídeos , Doenças dos Peixes , Franquincenso , Fungicidas Industriais , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Fungicidas Industriais/toxicidade , Boswellia/metabolismo , Ciclídeos/metabolismo , Franquincenso/metabolismo , Poluentes Químicos da Água/toxicidade , Dieta/veterinária , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/metabolismo , Suplementos Nutricionais/análise , Ração Animal/análise , Doenças dos Peixes/induzido quimicamente
3.
Gels ; 9(8)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37623096

RESUMO

Heavy metal toxicity is an important issue owing to its harmful influence on fish. Hence, this study is a pioneer attempt to verify the in vitro and in vivo efficacy of a magnetite (Fe3O4) nanogel (MNG) in mitigating waterborne lead (Pb) toxicity in African catfish. Fish (n = 160) were assigned into four groups for 45 days. The first (control) and second (MNG) groups were exposed to 0 and 1.2 mg L-1 of MNG in water. The third (Pb) and fourth (MNG + Pb) groups were exposed to 0 and 1.2 mg L-1 of MNG in water and 69.30 mg L-1 of Pb. In vitro, the MNG caused a dramatic drop in the Pb level within 120 h. The Pb-exposed group showed the lowest survival (57.5%) among the groups, with substantial elevations in hepato-renal function and lipid peroxide (MDA). Moreover, Pb exposure caused a remarkable decline in the protein-immune parameters and hepatic antioxidants, along with higher Pb residual deposition in muscles and obvious histopathological changes in the liver and kidney. Interestingly, adding aqueous MNG to Pb-exposed fish relieved these alterations and increased survivability. Thus, MNG is a novel antitoxic agent against Pb toxicity to maintain the health of C. gariepinus.

4.
Aquat Toxicol ; 261: 106630, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37406490

RESUMO

An acute exposure study of mancozeb (MAZ) fungicide was applied on Oreochromis niloticus for 96-h duration. Three hundred fish (20.50 ± 1.60 g) were assigned into six groups (50 fish/ group; 10 fish/replicate) and exposed to different six concentrations (0, 4, 8, 12, 16, and 20 mg L-1) of MAZ for 96-h. The Probit analysis program was used to compute the 96-h lethal concentration 50 (96-h LC50) of MAZ. During the exposure duration, the fish's behavior, clinical symptoms, and mortalities were recorded daily. After the exposure period was ended, the hematological, biochemical, immunological, and oxidant/antioxidant parameters were evaluated. The results of this study recorded the 96-h LC50 of MAZ for O. niloticus to be 11.49 mg L-1. Acute MAZ exposure badly affected the fish's behavior in the form of increased the breath gasping and swimming activity with aggressive mode. The exposed fish showed excessive body hemorrhages and fin rot. The survival rate of the exposed fish to MAZ was 100, 80, 66, 50, 38, and 30% in 0, 4, 8, 12, 16, and 20 mg L-1 MAZ, respectively. The hematological indices (red blood cell count, hemoglobin, packed cell volume%, and white blood cell count) were significantly decreased by increasing the MAZ exposure concentration (8-20 mg L-1). The acetylcholine esterase activity and immune indices (lysozyme, nitric oxide, immunoglobulin M, complement 3) were decreased by MAZ exposure (4-20 mg L-1). Acute MAZ exposure induced hepato-renal dysfunction and elevated stress-related parameter (cortisol) by increasing the MAZ concentration. A significant reduction in the antioxidant parameters (total antioxidant activity, catalase, and superoxide dismutase) with increasing the lipid peroxidation marker (malondialdehyde) was noticed by acute MAZ exposure (4 -20 mg L-1) in O. niloticus. Based on these outcomes, the MAZ exposure induced toxicity to the fish evident in changes in fish behavior, neurological activity, hepato-renal functioning, and immune-antioxidant responses which suggest physiological disruption.


Assuntos
Ciclídeos , Fungicidas Industriais , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Fungicidas Industriais/toxicidade , Ciclídeos/fisiologia , Etologia , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo , Dieta , Suplementos Nutricionais/análise , Ração Animal/análise
5.
Aquat Toxicol ; 250: 106257, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35933907

RESUMO

The existing study was designed to inspect the toxicological consequences of two pesticides; lambda-cyhalothrin (LCT) and methomyl (MTM) and their combination on Nile tilapia (Oreochromis niloticus) behaviors, oxidative stress, hepato-renal function indices and microarchitectural alterations. In addition, the efficiency of taurine (TUR) to rescue their toxicity was also considered. Juvenile O. niloticus were assigned into eight groups. The control and TUR groups were fed on a basal diet and TUR-enriched (10 g kg1) diet, respectively. The other groups were fed on a basal diet, and exposed to LCT (0.079 µg L-1), MTM (20.39 µg L-1 and (LCT + MTM). The last three groups were (LCT + TUR), (MTM + TUR), and (LCT + MTM + TUR) and fed on a TUR-enriched diet during exposure to LCT and/or MTM for 60 days. The exposure to LCT and/or MTM resulted in several behavioral alterations and stress via enhanced cortisol and nor-epinephrine levels. A significant elevation of serum 8-hydroxy-2- deoxyguanosine, aspartate and alanine aminotransferases, lactate dehydrogenase, Alkaline phosphatase, urea, creatinine was also observed in these groups. Furthermore, reduced antioxidant enzymes activities, including (catlase, glutathione peroxidase, and superoxide dismutase) with marked histopathological lesions in both liver and kidney tissues were detected. The up-regulated Bax and down-regulated Bcl-2 proteins were expressed in the liver and kidney tissues of LCT and/or MTM -exposed groups. Interestingly, all the observed alterations in behaviors, biochemical indices, and histo-architecture of renal and hepatic tissues were mitigated by TUR supplementation. The findings suggest that feeding O. niloticus dietary TUR may help to reduce the negative effects of LCT and/or MTM, and can also support kidney and liver health in O. niloticus, making it a promising aquaculture feed supplement.


Assuntos
Ciclídeos , Poluentes Químicos da Água , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Ciclídeos/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Fígado , Metomil/metabolismo , Metomil/farmacologia , Nitrilas , Estresse Oxidativo , Piretrinas , Taurina/metabolismo , Taurina/farmacologia , Poluentes Químicos da Água/toxicidade
6.
Aquat Toxicol ; 249: 106238, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35863252

RESUMO

Silica nanoparticles (SiNPs) are among the non-toxic nanoparticles (NPs) that have magnetic capabilities. It is hypothesized that SiNPs may be able to reduce toxic effects exerted by a mixture of lead (Pb) and mercury (Hg) in African catfish Clarias gariepinus. The in vitro magnetic potential of SiNPs to absorb Pb and Hg was tested. Fish (N = 240) were divided into four groups in triplicates for 30 days. The first group served as control and the second group (SiNPs) was exposed to 1/10 of 96 h LC50 of SiNPs (14.45 mg/L). The third group (HMM) was exposed to 1/10 of 96-h LC50 of a mixture of mercury chloride (HgCl2) and lead chloride (PbCl2) equal to 0.04 mg/ L and 23.1 mg/L. The fourth group (SiNPs+ HMM) was exposed to a suspension composed of SiNPs, HgCl2, and PbCl2 at the same concentrations as the third group. Results showed that fish exposed to heavy metals revealed the following consequences; a significant decrease in hematological, immunological (complement-3 and nitric oxide), and antioxidants (total antioxidant capacity, glutathione peroxidase, superoxide dismutase, and catalase) indices, down-regulation of IL-1ß, IL-8, TGF-ß, NF-κß, HSP70, and Hepcidin genes, the highest mortality rate (48.33%), higher values of alkaline phosphatase, alanine, and aspartate aminotransferases, urea, creatinine, and branchial malondialdehyde, marked up-regulation of CC chemokine and CXC chemokines, and high HMs residues levels in muscles. Extensive pathology showed degeneration with diffuse vacuolation of hepatopancreatic cells and hemorrhage in the HMM group. Interestingly, the exposed group to SiNPs and HMM demonstrated a decline of HMs concentration in fish muscles and modulated the abovementioned parameters with the regeneration of histological alterations of liver and gills. Based on the study outcomes, we highlight the importance and the safety of SiNPs as a novel aqueous additive to alleviate HMs toxicity and recommend using SiNPs for enhancing fish performance for sustaining aquaculture without adverting safety of human health by their little accumulation in muscular tissue.


Assuntos
Peixes-Gato , Mercúrio , Metais Pesados , Nanopartículas , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Peixes-Gato/metabolismo , Humanos , Chumbo , Metais Pesados/toxicidade , Nanopartículas/toxicidade , Estresse Oxidativo , Dióxido de Silício/toxicidade , Poluentes Químicos da Água/toxicidade
7.
Aquat Toxicol ; 224: 105493, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32408004

RESUMO

Currently, the contamination of water with different insecticides like profenofos (PFF) is a critical concern in the aquatic ecosystem. There are limited studies available on the negative impacts of PFF on common carp fish (Cyprinus carpio L.). Therefore, the existing study was designed to investigate the effect of PFF exposure (1/10 of the 96 h-LC50) on the neurobehavior, growth performance, chemical composition, oxidative status, DNA damage, apoptotic status and histological indices of the brain and gill tissues. In addition, this study seeks to detect the ability of geranium essential oil (GEO) dietary supplementation to mitigate the negative impacts of PFF. Accordingly, a total of 120 healthy fish were divided into four groups: the control group, fed on basal diet only; the other groups were fed on a basal diet supplemented with 400 mg kg-1 GEO, basal diet and PFF in water (PFF group), and supplemented diet with GEO and PFF in water (GEO + PFF), respectively, for 60 days. The results showed that PFF significantly reduced fish growth performance, crude protein, and lipid contents. It caused several behavioral alterations including spiral movement, decreased activeness, and changes in feeding behavior. Moreover, PFF increased the DNA tail length, tail moment, and the level of 8-hydroxy-2'-deoxyguanosine. Histologically, PFF induced a wide array of circulatory, inflammatory, regressive and progressive alterations in the brain and gill tissues. PFF significantly downregulated Bcl-2 and upregulated caspase-3 immuno-expression in both organs. Further, it considerably depleted the antioxidant enzymes, including superoxide dismutase, catalase, and glutathione peroxidase. The GEO supplementation did not reach the respective control values but markedly improved most of the behavioral, physical, biochemical, oxidative, apoptotic, and inflammatory markers, altered by PFF exposure. It also protected the gill and brain tissues from the branchial and encephalopathic effects of PFF. These findings suggest that GEO dietary supplements could be advantageous for mitigating PFF negative impacts and presenting a promising feed additive for common carp in aquaculture.


Assuntos
Apoptose/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Carpas , Dano ao DNA/efeitos dos fármacos , Geranium/química , Óleos Voláteis/farmacologia , Organotiofosfatos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Aquicultura , Encéfalo/enzimologia , Encéfalo/patologia , Carpas/genética , Carpas/metabolismo , Dieta , Suplementos Nutricionais , Ecossistema , Brânquias/efeitos dos fármacos , Brânquias/enzimologia , Brânquias/patologia , Óleos Voláteis/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...